Some Special Properties of I-rough Topological Spaces
نویسندگان
چکیده
Abstract. This paper extends some essential topological properties in general topological spaces in to the I-rough topological spaces, the topology of the rough universe. I-rough compactness and I-rough Hausdorffness are introduced and several properties are investigated. I-rough compactness of subsets of I-rough Hausdorff spaces are studied. Also the paper establishes I-rough connectedness in an I-rough topological space.
منابع مشابه
ON LOCAL BOUNDEDNESS OF I-TOPOLOGICAL VECTOR SPACES
The notion of generalized locally bounded $I$-topological vectorspaces is introduced. Some of their important properties arestudied. The relationship between this kind of spaces and thelocally bounded $I$-topological vector spaces introduced by Wu andFang [Boundedness and locally bounded fuzzy topological vectorspaces, Fuzzy Math. 5 (4) (1985) 87$-$94] is discussed. Moreover, wealso use the fam...
متن کاملTopological number for locally convex topological spaces with continuous semi-norms
In this paper we introduce the concept of topological number for locally convex topological spaces and prove some of its properties. It gives some criterions to study locally convex topological spaces in a discrete approach.
متن کاملConnected and Hyperconnected Generalized Topological Spaces
A. Csaszar introduced and extensively studied the notion of generalized open sets. Following Csazar, we introduce a new notion hyperconnected. We study some specic properties about connected and hyperconnected in generalized topological spaces. Finally, we characterize the connected component in generalized topological spaces.
متن کاملSome algebraic properties of Lambert Multipliers on $L^2$ spaces
In this paper, we determine the structure of the space of multipliers of the range of a composition operator $C_varphi$ that induces by the conditional expectation between two $L^p(Sigma)$ spaces.
متن کاملTopological structure on generalized approximation space related to n-arry relation
Classical structure of rough set theory was first formulated by Z. Pawlak in [6]. The foundation of its object classification is an equivalence binary relation and equivalence classes. The upper and lower approximation operations are two core notions in rough set theory. They can also be seenas a closure operator and an interior operator of the topology induced by an equivalence relation on a u...
متن کامل